Abstract

The paper deals with joint use of non-invasive monitoring technologies and civil engineering analysis methods aimed at providing multi-sensing information about the structural health of historical and cultural assets. Specifically, linear variable displacement transducers (LVDT) and ground penetrating radar (GPR) are considered for monitoring a significant crack affecting the Consoli Palace in Gubbio, Italy, precisely one of the walls of the cross-hall leading to the Loggia. In this frame, LVDT is adopted to control horizontal amplitude variations of the crack, while GPR is applied to investigate the wall interior and to detect the occurrence of inner issues related to the visible appearance of the crack on the wall surface. The effectiveness of GPR surveys is improved by means of a microwave tomography-based data processing strategy. The main result is that there is a consistency between the monitoring outputs of LVDT, which allowed us to display the crack widening/contraction due to the seasonal temperature variations, and the fact that no significant changes of the geometry of the inner areas of the walls were observed by the GPR.

Highlights

  • Diagnostics and monitoring of the health status of manmade structures, such as bridges, dams, public and private buildings as well as monuments, are a significant issue and involve continuous research activities

  • The crack belongs to a complex damage scenario, which is ascribed to several actions: horizontal shear forces acting in the plane of the South façade, detachment of internal walls from the façade and possible out-of-plane movements of the Loggia

  • The monitoring period started on 5 July 2017, and the data have been recorded through a data acquisition system, model NI CompactDAQ-9132, supplied through an uninterruptible power supply (UPS), with the following technical characteristics: processor 1.33 GHz dual-core atom, 2 GB RAM, 16 GB SD storage, 4-Slot, Windows Embedded Standard

Read more

Summary

Introduction

Diagnostics and monitoring of the health status of manmade structures, such as bridges, dams, public and private buildings as well as monuments, are a significant issue and involve continuous research activities. The aim is the development of effective sensing/ observational strategies capable of improving maintenance and intervention by looking to their economic sustainability (Chong et al 2001; Wang et al 2014; Chen et al 2017) In this frame, currently there is a huge interest towards the joint and cooperative use of state of art civil engineering analysis methods and electromagnetic sensing techniques, with the aim to provide objective data suitable to support and integrate information gathered by means of ordinary visual inspections. Such an integration should enable models, built in the design or assessment phase, to be able to “react” to changes occurring over the life cycle of a structure, as discussed in Rio et al (2013), Chen et al (2014) and Sternal and Dragos (2016)

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.