Abstract

The Boros-Moll polynomials arise in the evaluation of a quartic integral. The original double summation formula does not imply the fact that the coefficients of these polynomials are positive. Boros and Moll proved the positivity by using Ramanujan’s Master Theorem to reduce the double sum to a single sum. Based on the structure of reluctant functions introduced by Mullin and Rota along with an extension of Foata’s bijection between Meixner endofunctions and bi-colored permutations, we find a combinatorial proof of the positivity. In fact, from our combinatorial argument one sees that it is essentially the binomial theorem that makes it possible to reduce the double sum to a single sum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.