Abstract
Due to the successful operation of dedicated satellite gravity missions, nowadays high-accuracy global gravity field models have become available. This triggers the challenge to optimally combine this long to medium wavelength gravity field information derived from space-borne data with high-resolution terrestrial gravity data. In this paper, the least squares collocation concept is revised with the attempt to consistently unify the combination procedure in such a way that the full information contained in both data sets is merged. For example, in local or regional geoid determination the remove-restore method is usually applied only partially taking into account the accuracy of the global model coefficients used for the long-wavelength reduction. The key advantage of the extended formulation is the fact that it automatically accounts for the error covariance of all data types involved. The applicability, feasibility and performance of the proposed method is investigated in the frame of numerical closed-loop simulations. The two main fields of application, i.e., the improvement of a global gravity field model by terrestrial gravity field data, and, vice versa, the support to a regional geoid solution by the incorporation of a global gravity field model, have been analyzed and assessed. Although applied under simplified conditions, it could be shown that the method works and is practically applicable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.