Abstract

Most commercial white LEDs are made from nitride-based blue LEDs coated with yttrium aluminium garnet phosphor, which produce spectra that shift in opposite directions under the influences of drive current and junction temperature changes. This property gives rise to different emitted spectra, hence chromaticity properties, when the LED is driven/dimmed by different current waveforms. By using a commercial white LED sample, LUXEON K2, the effects of drive current and junction temperature on the changes of chromaticity coordinates are studied experimentally. The impact of dc, pulse width modulation (PWM), and bilevel current waveform is discussed through a graphical analysis, followed by experimental verification. It is proven that dc offers the best color stability over dimming due to the counteracting influences of drive current and junction temperature variations, whereas an LED constantly suffers from noneliminable chromaticity changes when driven by the PWM. Theoretical explanations are given to justify these cases, and it is found that, for the case of dc drive, an ideal heat sink's thermal resistance can be selected based on a simple equation to minimize the overall chromaticity change over dimming. This paper provides an in-depth discussion on the relations between the chromaticity properties of phosphor-converted (pc) white LEDs and the driving/dimming methods used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.