Abstract

In the contemporary landscape of engineering, escalating demands for advanced material and structural performance have brought metamaterials to the forefront. Among them, the enhanced anti-tetra-missing rib structure has gained prominence owing to its auxetic behavior under significant strain. However, the lack of research on its quasi-static and dynamic mechanical performance have hindered its practical application. To address this, we introduce the tubular enhanced anti-tetra-missing rib structure (TEATMRS) and derive its collapse stress expression under various conditions. Through extensive simulations and experiments, we explore its deformation mechanisms and assess the influence of the structural geometric parameters and impact velocity on collapse stress. The results demonstrate excellent agreement among theoretical description, numerical analysis, and experimental tests, establishing the feasibility of the proposed collapse stress expression. These findings provide a theoretical foundation and design guidance for TEATMRS in engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.