Abstract
We are proving Coincidence theorem due to Walsh for the case when the total degree of a polynomial is less than the number of arguments. Also, the following result has been proven: if $$p(z)$$ is a complex polynomial of degree $$n$$, then closed disk D that contains at least $$n-1$$ of its zeros (counting multiplicity) contains at least $$\left[\frac{n-2k+1}{2} \right]$$ zeros of its $$k$$-th derivative, provided that the arithmetical mean of these zeros is also centre of D. We also prove a variation of the classical composition theorem due to Szegö.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.