Abstract

Vakil and Matchett-Wood (Discriminants in the Grothendieck ring of varieties, 2013. arXiv:1208.3166) made several conjectures on the topology of symmetric powers of geometrically irreducible varieties based on their computations on motivic zeta functions. Two of those conjectures are about subspaces of text {Sym}^n(mathbb {P}^1). In this note, we disprove one of them and prove a stronger form of the other, thereby obtaining (counter)examples to the principle of Occam’s razor for Hodge structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.