Abstract
We propose a method for computing the cohomology ring of three-dimensional (3D) digital binary-valued pictures. We obtain the cohomology ring of a 3D digital binary-valued picture I, via a simplicial complex K ( I ) topologically representing (up to isomorphisms of pictures) the picture I. The usefulness of a simplicial description of the “digital” cohomology ring of 3D digital binary-valued pictures is tested by means of a small program visualizing the different steps of the method. Some examples concerning topological thinning, the visualization of representative (co)cycles of (co)homology generators and the computation of the cup product on the cohomology of simple pictures are showed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.