Abstract
Abstract In this paper, we do the following two things: (i) We present a formula to compute the rational cohomology ring of a real topological toric manifold, and thus that of a small cover or a real toric manifold, which implies the formula of Suciu and Trevisan. Furthermore, the formula also works for an arbitrary coefficient ring G in which 2 is a unit. (ii) We construct infinitely many real toric manifolds and small covers whose integral cohomology rings have a q-torsion for any positive odd integer q.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.