Abstract
The solution fields of Maxwell’s equations are known to exhibit singularities near corners, crack tips, edges, and so forth of the physical domain. The structures of the singular fields are well known up to some undetermined coefficients. In two-dimensional domains with corners and cracks, the unknown coefficients are real constants. However, in three-dimensional domains the unknown coefficients are functions defined along the corresponding edges. This paper proposes explicit formulas for the computation of these coefficients in the case of two-dimensional domains with corners and three-dimensional domains with straight edges. The coefficients of the singular fields along straight edges of three-dimensional domains are represented in terms of Fourier series. The formulas presented are aimed at the numerical approximation of the coefficients of the singular fields. They can also be used for the construction of adaptiveH1-nodal finite-element procedures for the efficient numerical treatment of Maxwell’s equations in nonsmooth domains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.