Abstract

We investigated experimentally and theoretically the dynamics of a driven granular gas on a square lattice and discovered two characteristic regimes: Initially, given the dissipative nature of the collisions, particles move erratically through the system and start to gather on selected sites called traps. Later on, the formation of those traps leads to a strong decrease of the grain mobility and slows down dramatically the dynamics of the entire system. We realize detailed measurements linking a trap's stability to the global evolution of the system and propose a model reproducing the entire dynamics of the system. Our work emphasizes the complexity of coarsening dynamics of dilute granular systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call