Abstract

Two opposing models for the amylopectin structure are historically and comprehensively reviewed, which leads us to a better understanding of the specific fine structure of amylopectin. Amylopectin is a highly branched glucan which accounts for approximately 65-85 of starch in most plant tissues. However, its fine structure is still not fully understood due to the limitations of current methodologies. Since the 1940s, many scientists have attempted to elucidate the distinct structure of amylopectin. One of the most accepted concepts is that amylopectin has a structural element known as "cluster", in which neighboring side chains with a degree of polymerization of ≥ 10 in the region of their non-branched segments form double helices. The double helical structures are arranged in inter- and intra-clusters and are the origin of the distinct physicochemical and crystalline properties of starch granules. Several models of the cluster structure have been proposed by starch scientists worldwide during the progress of analytical methods, whereas no direct evidence so far has been provided. Recently, Bertoft and colleagues proposed a new model designated as "the building block and backbone (BB) model". The BB model sharply contrasts with the cluster model in that the structural element for the BB model is the building block, and that long chains are separately synthesized and positioned from short chains constituting the building block. In the present paper, we conduct the historical review of the cluster concept detailing how and when the concept was established based on experimental results by many scientists. Then, differences between the two opposing concepts are explained and both models are critically discussed, particularly from the point of view of the biochemical regulation of amylopectin biosynthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.