Abstract

Since high and low clouds ubiquitously overlie the Tropical Western Pacific (TWP) region, the cloud radiative effect (CRE) cannot be influenced by either high or low clouds, but by combinations of the clouds. This study investigates the CRE of multi-layered clouds in TWP via a radiative transfer model, Streamer. We assumed that multi-layered clouds are composed of full coverage of high clouds overlying low clouds with fractional coverage. The simulation results show that low clouds readily change CREs from positive to negative in the case of optically thin high clouds, even if the fraction of low clouds takes 10% of that of high clouds. Also, various combinations of physical properties of multi-layered high and low clouds allow more CRE variability (− 253.76 to 93.10 W m−2) than single-layered clouds do (− 101.62 to 96.95 W m−2). Even in the same conditions (total column cloud optical thickness = 15 and high cloud top pressure = 200 hPa), the multi-layer clouds have various CREs from − 180.55 to 45.64 W m−2, while the single-layer high clouds − 2.00 W m−2. These findings are also comparable with satellite observations from CERES and CALIPSO. The present study suggests that considerable uncertainty of radiative effects of high clouds over TWP can attribute to low clouds below high clouds.

Highlights

  • Over the Tropical Western Pacific (TWP), high clouds have consistently been proposed as primary modulators of the regional climate system’s radiation balance due to persistent occurrence and large areal coverage in response to the higher sea surface temperature (SST) (Liou, 1986; Bony et al 1997; Lynch et al 2002; Lee et al 2009)

  • This is because LW cloud radiative effect (CRE) of high clouds is predominant over that of low clouds (­CFhigh = 1 vs. C­ Flow = 0.1)

  • Summary and discussions The present study has demonstrated that multi-layered clouds show more extensive variations in CREs compared to single-layered clouds from a radiative transfer model Streamer

Read more

Summary

Introduction

Over the Tropical Western Pacific (TWP), high clouds (i.e., cirrus, cirrostratus, and deep convective clouds; Rossow and Schiffer, 1991) have consistently been proposed as primary modulators of the regional climate system’s radiation balance due to persistent occurrence and large areal coverage in response to the higher sea surface temperature (SST) (Liou, 1986; Bony et al 1997; Lynch et al 2002; Lee et al 2009). Due to limitations of current satellites for detecting daily fractional changes of multi-layered clouds (Kim et al 2011; L’Ecuyer et al 2019), the present study simulated high clouds overlying low clouds by varying COT, cloud top pressure (CTP) and cloud fraction (CF).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.