Abstract

Relational models for contingency tables are generalizations of log-linear models, allowing effects associated with arbitrary subsets of cells in a possibly incomplete table, and not necessarily containing the overall effect. In this generality, the MLEs under Poisson and multinomial sampling are not always identical. This paper deals with the theory of maximum likelihood estimation in the case when there are observed zeros in the data. A unique MLE to such data is shown to always exist in the set of pointwise limits of sequences of distributions in the original model. This set is equal to the closure of the original model with respect to the Bregman information divergence. The same variant of iterative scaling may be used to compute the MLE whether it is in the original model or in its closure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.