Abstract

scription of the closed ideals in the disc algebra is shown to apply to an ideal whose hull meets the boundary of the domain in a finite union of analytic arcs. The canonical factorization into inner and outer functions in the disc is replaced by a potential theoretic decomposition theorem, thus allowing essentially the same description to be carried over. The basically local nature of the problem is used to reduce it to the previously known ideal theory of a compact bordered Riemann surface. This reduction is facilitated by a factorization theorem that is proved by potential theoretic methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.