Abstract

AbstractClouds play a significant role for the energy budget in planetary atmospheres. They can scatter incident stellar radiation back to space, effectively cooling the surface of terrestrial planets. On the other hand, they may contribute to the atmospheric greenhouse effect by trapping outgoing thermal radiation. For exoplanets near the outer boundary of the habitable zone, condensation of CO2can occur due to the low atmospheric temperatures. These CO2ice clouds may play an important role for the surface temperature and, therefore, for the question of habitability of those planets. However, the optical properties of CO2ice crystals differ significantly from those of water droplets or water ice particles. Except for a small number of strong absorption bands, they are almost transparent with respect to absorption. Instead, they are highly effective scatterers at long and short wavelengths. Therefore, the climatic effect of a CO2ice cloud will depend on how much incident stellar radiation is scattered to space in comparison to the amount of thermal radiation scattered back towards the planetary surface. This contribution aims at the potential greenhouse effect of CO2ice particles. Their scattering and absorption properties are calculated for assumed particle size distributions with different effective radii and particle densities. An accurate radiative transfer model is used to determine the atmospheric radiation field affected by such CO2particles. These results are compared to less detailed radiative transfer schemes employed in previous studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call