Abstract
In this paper we consider the structure of general quantum W-algebras. We introduce the notions of deformability, positive-definiteness, and reductivity of a W-algebra. We show that one can associate a reductive finite Lie algebra to each reductive W-algebra. The finite Lie algebra is also endowed with a preferred sl(2) subalgebra, which gives the conformal weights of the W-algebra. We extend this to cover W-algebras containing both bosonic and fermionic fields, and illustrate our ideas with the Poisson bracket algebras of generalised Drinfeld-Sokolov hamiltonian systems. We then discuss the possibilities of classifying deformable W-algebras which fall outside this class in the context of automorphisms of Lie algebras. In conclusion we list the cases in which the W-algebra has no weight-one fields, and further, those in which it has only one weight-two field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.