Abstract
Abstract We study the Bergman metric of a finite ball quotient $\mathbb{B}^n/\Gamma $, where $n \geq 2$ and $\Gamma \subseteq{\operatorname{Aut}}({\mathbb{B}}^n)$ is a finite, fixed point free, abelian group. We prove that this metric is Kähler–Einstein if and only if $\Gamma $ is trivial, that is, when the ball quotient $\mathbb{B}^n/\Gamma $ is the unit ball ${\mathbb{B}}^n$ itself. As a consequence, we characterize the unit ball among normal Stein spaces with isolated singularities and abelian fundamental groups in terms of the existence of a Bergman–Einstein metric.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.