Abstract
We approach the classification of Lie bialgebra structures on simple Lie algebras from the viewpoint of descent and non-abelian cohomology. We achieve a description of the problem in terms of faithfully flat cohomology over an arbitrary ring over \mathbb{Q} , and solve it for Drinfeld-Jimbo Lie bialgebras over fields of characteristic zero. We consider the classification up to isomorphism, as opposed to equivalence, and treat split and non-split Lie algebras alike. We moreover give a new interpretation of scalar multiples of Lie bialgebras hitherto studied using twisted Belavin-Drinfeld cohomology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.