Abstract

Long-term (8years), simultaneous data on aerosol optical properties from MODIS and OMI satellite sensors are analyzed to study their temporal characteristics and to infer on the major aerosol types present over the study location, Bangalore situated in south central peninsular India. Investigations are carried out on Aerosol Optical Depths (AODs), Angstrom exponent (α) and Aerosol Index (AI) for the purpose. Aerosol parameters exhibited significant seasonal variations: AODs peaking during monsoon, α during post-monsoon and AI during summer. Seasonal air mass back trajectories are computed to infer on the transport component over the study region. By assigning proper thresholds (depending on the nature of the location and transport pathways) on AOD and α values, aerosols are discriminated into their major types viz., marine influenced, desert dust, urban/industrialized and mixed types. Further sub-categorization of the aerosols has been done on an annual scale taking into account of their absorptance information in terms of the OMI-AI values. Mixed type aerosols contributed the most during all the seasons. Next to mixed type aerosols, marine influenced aerosols dominated during winter, desert dust during monsoon and summer, urban/industrialized aerosols during post-monsoon. Considering the urban nature of the study location, urban/industrialized/carbonaceous type aerosols have been significantly underestimated in these methodologies. Finally, discussion has been made on the consistency of the results obtained from the methodologies (i) based on AODs and α; (ii) based on AODs, α and AI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.