Abstract

The Kuramoto-Sivashinsky equation with Ehrilch-Schwoebel effects models the evolution of surface morphology during Molecular Beam Epitaxy growth, provoked by an interplay between deposition of atoms onto the surface and the relaxation of the surface profile through surface diffusion. It consists of a nonlinear fourth order partial differential equation. Using energy methods we prove the well-posedness (i.e., existence, uniqueness and stability with respect to the initial data) of the classical solutions for the Cauchy problem, associated with this equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.