Abstract
For a commutative integral domain, the class semigroup and the class group are defined as the quotient of the semigroup of fractional ideals and the group of invertible ideals by the group of principal ideals, respectively. Let $p$ be a prime number. In algebraic number theory, especially in Iwasawa theory, the class group of the ring of integers $\mathcal{O} $ of the cyclotomic $\mathbb {Z}_{p}$-extension of the rational numbers has been studied for a long time. However, the class semigroup of $\mathcal{O} $ is not well known. We are interested in the structure of the class semigroup of $\mathcal{O} $. In order to study it, we focus on the structure of the complement set of the class group in the class semigroup of $\mathcal{O} $. In this paper, we prove that the complement set is a group and determine its structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.