Abstract
The circuit cover problem for mixed graphs (those containing edges and/or arcs) is defined as follows. Given a mixed graph M with a nonnegative integer weight function p on its edges and arcs, decide whether (M, p) has a circuit cover, that is, a list of circuits in M such that every edge (arc) e is contained in exactly p(e) circuits of the list. In the special case when M is a directed graph (contains only arcs), the problem is easy, but when M is an undirected graph not many results are known. For general mixed graphs this problem was shown to be NP-complete by Arkin and Papadimitriou in 1986. We prove that this problem remains NP-complete for planar mixed graphs. Furthermore, we present a good characterization for the existence of a circuit cover when M is series-parallel (a similar result holds for the fractional version). We also describe a polynomial algorithm to find such a circuit cover, when it exists. This is an ellipsoid-based algorithm whose separation problem is the minimum circuit problem on series-parallel mixed graphs, which we show to be polynomially solvable. Results on two well-known combinatorial problems, the problem of detecting negative circuits and the problem of finding shortest paths, are also presented. We prove that both problems are NP-hard for planar mixed graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.