Abstract
The visibility graph V(P) of a point set P \subseteq R2 has vertex set P, such that two points v,w ∈ P are adjacent whenever there is no other point in P on the line segment between v and w. We study the chromatic number of V(P). We characterise the 2- and 3-chromatic visibility graphs. It is an open problem whether the chromatic number of a visibility graph is bounded by its clique number. Our main result is a super-polynomial lower bound on the chromatic number (in terms of the clique number).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.