Abstract
Using geometric methods, we improve on the function field version of the Burgess bound and show that, when restricted to certain special subspaces, the Möbius function over $\mathbb{F}_q[T]$ can be mimicked by Dirichlet characters. Combining these, we obtain a level of distribution close to $1$ for the Möbius function in arithmetic progressions and resolve Chowla's $k$-point correlation conjecture with large uniformity in the shifts. Using a function field variant of a result by Fouvry-Michel on exponential sums involving the Möbius function, we obtain a level of distribution beyond $1/2$ for irreducible polynomials, and establish the twin prime conjecture in a quantitative form. All these results hold for finite fields satisfying a simple condition.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.