Abstract

Dosimetric characteristics of polystyrene, solid water, and polymethylmethacrylate were examined and compared to water to determine the suitability of these solid materials for the dosimetry of 192Ir. Ionization charge measured in each of the four media as a function of depth and depth-dose curves calculated by Monte Carlo simulation show that the three solids are equivalent to each other and to water under full scattering conditions. Photon energy spectra generated from the Monte Carlo simulation show little variation for the different media. Mass energy absorption coefficients and exposure-to-dose conversion factors were calculated as a function of depth for these spectra. Measured tissue attenuation factors are in excellent agreement with Meisberger's “selected” values. The radial dose function, which describes the change in dose with distance in phantom exclusive of the inverse square law, was calculated from the tissue attenuation factor and found to be in significant disagreement with Dale's Monte Carlo values. The reason for this discrepancy is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.