Abstract
We consider the task of Bayesian inference of the mean of normal observations when the available data have been discretized and when no prior knowledge about the mean and the variance exists. An application is presented which illustrates that the discretization of the data should not be ignored when their variability is of the order of the discretization step. We show that the standard (noninformative) prior for location-scale family distributions is no longer appropriate. We work out the reference prior of Berger and Bernardo, which leads to different and more reasonable results. However, for this prior the posterior also shows some non-desirable properties. We argue that this is due to the inherent difficulty of the considered problem, which also affects other methods of inference. We therefore complement our analysis by an empirical Bayes approach. While such proceeding overcomes the disadvantages of the standard and reference priors and appears to provide a reasonable inference, it may raise conceptual concerns. We conclude that it is difficult to provide a widely accepted prior for the considered problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.