Abstract
Given a sequence of ϕ-mixing random variables not necessarily stationary, a Chernoff-Savage theorem for two-sample linear rank statistics is proved using the Pyke-Shorack [5] approach based on weak convergence properties of empirical processes in an extended metric. This result is a generalization of Fears and Mehra [4] in that the stationarity is not required and that the condition imposed on the mixing numbers is substantially relaxed. A similar result is shown to hold for strong mixing sequences under slightly stronger conditions on the mixing numbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annals of the Institute of Statistical Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.