Abstract

In this work, we propose a novel photovoltaic device constructed from the junction of two carbon nanotubes, where the top of the valence band is mainly localized on one of the nanotubes' sides, while the bottom of the conduction one is mainly localized on the other side. This allows the separation of electrons on the side displaying the lower conduction band, from the holes, located at the other side. On the basis of self-consistent charge-density functional tight-binding calculations, we propose that this kind of device can be formed by joining two consecutive semiconducting zigzag carbon nanotubes. We have shown that, for these systems, the existence of the required band energy differences is related to the kind of variations in energy gap with the tube diameters, observed for the zigzag nanotubes. To illustrate the formation of the proposed junction, we have chosen to study a (10,0) tube joined linearly to a (11,0) one through a single pentagon–heptagon defect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.