Abstract

We present a comprehensive model for variable-bit-rate MPEG video streams. This model captures the bit-rate variations at multiple time scales. Long-term variations are captured by incorporating scene changes, which are most noticeable in the fluctuations of I frames. The size of an I frame is modeled by the sum of two random components: a scene-related component and an AR(2) component that accounts for the fluctuations within a scene. Two random processes of i.i.d. rvs are used to model the sizes of P and B frames, respectively. The complete model is then obtained by intermixing the three sub-models according to a given GOP pattern. It is shown that the composite model exhibits long-range dependence (LRD) in the sense that its autocorrelation function is non-summable. The LRD behavior is caused by the repetitive GOP pattern which induces periodic cross-correlations between different types of frames. Using standard statistical methods, we successfully fit our model to several empirical video traces. We then study the queueing performance for video traffic at a statistical multiplexer. The results show that the model is sufficiently accurate in predicting the queueing performance for real video streams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call