Abstract

Development and design of new products of various kinds often contain a very complex set of relationships among many coupled tasks. Ranking, controlling and redesigning the features of these tasks can be usefully performed by a suitable model based on the design structure matrix in an iteration procedure. The proposed interval approach of design iteration controls and predicts the convergence speed of iteration work on tasks within a project. Interval method is based on Perron-Frobenius theorem and interval linear algebra where intervals and interval matrices are employed instead of real numbers and real matrices. In this way, a more relaxed quantitative estimation of tasks is achieved and the presence of undetermined quantities is allowed to a certain extent. The presented model is demonstrated in the example of simplified domain-driven design process, an approach to software development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.