Abstract

A rectangular partition is a partition of a rectangle into a finite number of rectangles. A rectangular partition is generic if no four of its rectangles meet at the same point. A plane graph G is called a rectangularly dualizable graph if G can be represented as a rectangular partition such that each vertex is represented by a rectangle in the partition and each edge is represented by a common boundary segment shared by the corresponding rectangles. Then the rectangular partition is called a rectangular dual of the RDG. In this paper, we have found a minor error in a characterization for rectangular duals given by Koźmiński and Kinnen in 1985 without formal proof, and we fix this characterization with formal proof.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.