Abstract

The linear Onsager theory of irreversible thermodynamics is extended to include nonlinear phenomenological relations by means of Onsager fluxes. Such fluxes satisfy a full system of reciprocity relations, vanish in thermodynamic equilibrium, and give a non-negative production of entropy. A complete characterization of Onsager fluxes is obtained in terms of non-negative scalar valued functions which vanish in thermodynamic equilibrium. These same functions are also shown to characterize all C 2 fluxes which satisfy the second law of thermodynamics. Each system of Onsager fluxes is shown to derive from a dissipation function which attains its absolute minimum in thermodynamic equilibrium. The reaction rates given by reaction kinetics are shown to be Onsager fluxes and their dissipation functions are explicitly calculated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.