Abstract
AbstractThe hydrophobicity of alkyl‐polypropylene oxide sulfate surfactants was evaluated via their characteristic curvature (Cc) using the hydrophilic‐lipophilic difference (HLD) framework. A close examination of the relationship between the molecular structure of the surfactants considered (structure of the alkyl group and the number of propylene oxide groups in each surfactant) and their Cc led to a group contribution model that, for the first time, takes into consideration the geometry of the alkyl tail group. Based on this group contribution model, branching at the C2 (beta‐carbon) position of the alkyl group produces the largest increase in characteristic curvature. This observation is consistent with the notion that the Cc is associated with the packing factor for anionic surfactants. Branching at the C2 position tends to produce cylindrical or inverse cone shape packing, typical of more hydrophobic (positive Cc) surfactants. This study also confirms previous observations that, different from conventional anionic surfactants, the phase behavior of alkyl polypropylene oxide sulfates is less sensitive to electrolyte concentration and that these formulations turn hydrophobic with increasing temperature, akin to the behavior of nonionic surfactants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.