Abstract

We construct a mathematical model of non-linear vibration of a beam nanostructure with low shear stiffness subjected to uniformly distributed harmonic transversal load. The following hypotheses are employed: the nanobeams made from transversal isotropic and elastic material obey the Hooke law and are governed by the kinematic third-order approximation (Sheremetev-Pelekh-Reddy model). The von Kármán geometric non-linear relation between deformations and displacements is taken into account. In order to describe the size-dependent coefficients, the modified couple stress theory is employed. The Hamilton functional yields the governing partial differential equations, as well as the initial and boundary conditions. A solution to the dynamical problem is found via the finite difference method of the second order of accuracy, and next via the Runge-Kutta method of orders from two to eight, as well as the Newmark method. Investigations of the non-linear nanobeam vibrations are carried out with a help of signals (time histories), phase portraits, as well as through the Fourier and wavelet-based analyses. The strength of the nanobeam chaotic vibrations is quantified through the Lyapunov exponents computed based on the Sano-Sawada, Kantz, Wolf, and Rosenstein methods. The application of a few numerical methods on each stage of the modeling procedure allowed us to achieve reliable results. In particular, we have detected chaotic and hyper-chaotic vibrations of the studied nanobeam, and our results are authentic, reliable, and accurate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call