Abstract
The level of dexterity of myoelectric hand prostheses depends to large extent on the feature representation and subsequent classification of surface electromyography signals. This work presents a comparison of various feature extraction and classification methods on a large-scale surface electromyography database containing 52 different hand movements obtained from 27 subjects. Results indicate that simple feature representations as Mean Absolute Value and Waveform Length can achieve similar performance to the computationally more demanding marginal Discrete Wavelet Transform. With respect to classifiers, the Support Vector Machine was found to be the only method that consistently achieved top performance in combination with each feature extraction method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.