Abstract
This article is devoted to answering several questions about the central configurations of the planar ( 3 + 1 ) -body problem. Firstly, we study bifurcations of central configurations, proving the uniqueness of convex central configurations up to symmetry. Secondly, we settle the finiteness problem in the case of two nonzero equal masses. Lastly, we provide all the possibilities for the number of symmetrical central configurations, and discuss their bifurcations and spectral stability. Our proofs are based on applications of rational parametrizations and computer algebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.