Abstract
Let [Formula: see text] be a Lebesgue space and T: Ω→Ω an ergodic measure-preserving automorphism with positive entropy. We show that there is a bounded and strictly stationary martingale difference sequence defined on Ω with a common nondegenerate lattice distribution satisfying the central limit theorem with an arbitrarily slow rate of convergence and not satisfying the local limit theorem. A similar result is established for martingale difference sequences with densities provided the entropy is infinite. In addition, the martingale difference sequence may be chosen to be strongly mixing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.