Abstract

We examine the relation between oxygen abundances in the narrow-line regions (NLRs) of active galactic nuclei (AGNs) estimated from the optical emission lines through the strong-line method (the theoretical calibration of Storchi-Bergmann et al.(1998)), via the direct Te-method, and the central intersect abundances in the host galaxies determined from the radial abundance gradients. We found that the Te-method underestimates the oxygen abundances by up to ~2 dex (with average value of ~0.8 dex) compared to the abundances derived through the strong-line method. This confirms the existence of the so-called "temperature problem" in AGNs. We also found that the abundances in the centres of galaxies obtained from their spectra trough the strong-line method are close to or slightly lower than the central intersect abundances estimated from the radial abundance gradient both in AGNs and Star-forming galaxies. The oxygen abundance of the NLR is usually lower than the maximum attainable abundance in galaxies (~2 times the solar value). This suggests that there is no extraordinary chemical enrichment of the NLRs of AGNs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call