Abstract

This paper is devoted to a new integrable two-component Novikov equation with Lax pairs and bi-Hamiltonian structures. Ons the one hand, based on a generalized Ovsyannikov type theorem, we prove the existence and uniqueness of solutions in the Gevrey–Sobolev spaces with the lower bound of the lifespan, and show the continuity of the data-to-solution map. On the other hand, we prove that the strong solutions maintain corresponding properties at infinity within its lifespan provided the initial data decay exponentially and algebraically, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.