Abstract

We describe an approach to constructing an analytic Cartesian representation of the molecular dipole polarizability tensor surface in terms of polynomials in interatomic distances with a training set of ab initio data points obtained from a molecular dynamics (MD) simulation or by any other available means. The proposed formulation is based on a perturbation treatment of the unmodified point dipole polarizability model of Applequist [ J. Am. Chem. Soc. 1972, 94, 2952] and is shown here to be, by construction (i) free of short-range or other singularities or discontinuities, (ii) symmetric and translationally invariant, and (iii) nonreliant on a body-fixed coordinate system. Permutational invariance of like nuclei is demonstrated to be readily applicable, making this approach useful for highly fluxional and reactive systems. Derivation of the method is described in detail, adding brief didactic numerical examples of H2 and H2O and concluding with an MD simulation of the Raman spectrum of H5O2+ at 300 K with the polarizability tensor fitted to CCSD(T)/aug-cc-pVTZ data obtained using the HBB-4B potential [ J. Chem. Phys. 2005, 122, 044308].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.