Abstract

Abstract-The capacity of the intensity-modulation directdetection (IM-DD) optical broadcast channel (OBC) is investigated. The OBC is modeled as a Gaussian channel with input-independent noise and both average and peak input constraints. Outer and inner bounds on the capacity region are derived. The outer bounds are based on Bergmans' approach. The inner bounds are based on superposition coding with either truncated-Gaussian or discrete input distributions. By comparing the bounds, we observe that the truncated- Gaussian distribution is nearly optimal at high signal-to-noise ratio (SNR). At low SNR on the other hand, on-off keying (OOK) combined with time-division multiple-access (TDMA) is optimal; it achieves any point on the boundary of the developed outer bound. This is interesting in practice since both OOK and TDMA have low complexity. At moderate SNR (typically [0; 8] dB), a discrete input distribution with a small alphabet size achieves a fairly good performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.