Abstract

In this paper, we consider the bacterial point-to-point communication problem with one transmitter and one receiver by considering the ligand receptor binding process. The most commonly investigated signalling model, referred to as the Level Scenario (LS), uses one type of a molecule with different concentration levels for signaling. An alternative approach is to employ multiple types of molecules with a single concentration level, referred to as the Type Scenario (TS). We investigate the trade-offs between the two scenarios for the ligand receptor from the capacity point of view. For this purpose, we evaluate the capacity using numerical algorithms. Moreover, we derive an upper bound on the capacity of the ligand receptor for a Binomial Channel (BIC) model, using symmetrized Kullback-Leibler (KL) divergence. A lower bound is also derived when the environment noise is negligible. Finally, we analyse the effect of blocking of a receptor by a molecule of a different type, by proposing a new Markov model in the multiple-type signalling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.