Abstract

We characterize the capacity of Rayleigh block-fading multiple-input multiple-output (MIMO) channels in the noncoherent setting where transmitter and receiver have no a priori knowledge of the realizations of the fading channel. We prove that unitary space-time modulation (USTM) is not capacity-achieving in the high signal-to-noise ratio (SNR) regime when the total number of antennas exceeds the coherence time of the fading channel (expressed in multiples of the symbol duration), a situation that is relevant for MIMO systems with large antenna arrays (large-MIMO systems). This result settles a conjecture by Zheng & Tse (2002) in the affirmative. The capacity-achieving input signal, which we refer to as Beta-variate space-time modulation (BSTM), turns out to be the product of a unitary isotropically distributed random matrix, and a diagonal matrix whose nonzero entries are distributed as the square-root of the eigenvalues of a Beta-distributed random matrix of appropriate size. Numerical results illustrate that using BSTM instead of USTM in large-MIMO systems yields a rate gain as large as 13% for SNR values of practical interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.