Abstract
It is well known that the capacity region of an average transmit power constrained Gaussian Broadcast Channel (GBC) with independent noise realizations at the receivers is enlarged by the presence of causal noiseless feedback. When the noise variances at the receivers are identical, even passive feedback via independent memoryless Gaussian links can lead to a capacity region enlargement. The last fact remains true even when the feedback noise variance is very high, and available only from one of the receivers. While such capacity enlargements are feasible for several other feedback models in the Gaussian BC setting, it is also known that feedback does not change the capacity region for physically degraded broadcast channels. In this paper, we consider a two user GBC with independent noise realizations at the receivers, where the feedback links from the receivers are corrupted by independent additive Gaussian noise processes. We investigate the set of four noise variances, two forward and two feedback, for which no capacity enlargement is possible. A sharp characterization of this region is derived, i.e., any quadruple outside the presented region will lead to a capacity enlargement, whereas quadruples inside will leave the capacity region unchanged. Our results lead to the conclusion that when the forward noise variances are different, too noisy a feedback from one of the receivers alone is not always beneficial for enlarging the capacity region, be it from the stronger user or the weaker one, in sharp contrast to the case of equal forward noise variances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE Transactions on Information Theory
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.