Abstract

This work investigates the possibility to predict the auxetic behavior of composites consisting of non-auxetic phases by means of micromechanical models based on Eshelby’s inclusion concept. Two specific microstructures have been considered: (i) the three-layered hollow-cored fibers-reinforced composite and (ii) a microstructure imitating the re-entrant honeycomb micro-architecture. The micromechanical analysis is based on kinematic integral equations as a formal solution of the inhomogeneous material problem. The interaction tensors between the inhomogeneities are computed thanks to the Fourier’s transform. The material anisotropy due to the morphological and topological textures of the inhomogeneities was taken into account thanks to the multi-site approximation of these tensors. In both cases, the numerical results show that auxetic behavior cannot be captured by such models at least in the case of elastic and isotropic phases. This conclusion is supported by corresponding finite element investigations of the second microstructure that indicate that auxetic behavior can be recovered by introducing joints between inclusions. Otherwise, favorable issues are only expected with auxetic components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.