Abstract
Quantum sensors may provide extremely high sensitivity and precision to extract key information in a quantum or classical physical system. A fundamental question is whether a quantum sensor is capable of uniquely inferring unknown parameters in a system for a given structure of the quantum sensor and admissible measurement on the sensor. In this paper, we investigate the capability of a class of quantum sensors which consist of either a single qubit or two qubits. A quantum sensor is coupled to a spin chain system to extract information of unknown parameters in the system. With given initialization and measurement schemes, we employ the similarity transformation approach and the Gröbner basis method to prove that a single-qubit quantum sensor cannot effectively estimate the unknown parameters in the spin chain system while the two-qubit quantum sensor can. The work demonstrates that it is a feasible method to enhance the capability of quantum sensors by increasing the number of qubits in the quantum sensors for some practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.