Abstract

The Kennedy model offers a robust framework for modeling forward rates, leveraging Gaussian random fields to accommodate emerging phenomena such as negative rates. In our study, we employ maximum likelihood estimations to determine the parameters of the Kennedy field, utilizing Radon–Nikodym derivatives for enhanced accuracy. We introduce an efficient simulation method for the Kennedy field and develop a Black–Scholes-like analytical pricing formula for diverse financial assets. Additionally, we present a novel parameter estimation algorithm grounded in numerical extreme value optimization, enabling the recalibration of parameters based on observed financial product prices. To validate the efficacy of our approach, we assess its performance using real-world par swap rates in the latter part of this article.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.