Abstract

We report some results on the calculation of vibrational spectra of molecules in condensed phase with accounting simultaneously for anharmonicity and solute-solvent interactions, the latter being described by means of the polarizable continuum model (PCM). Density functional theory force fields are employed as well as a new implementation of the PCM cavity and its derivatives. The results obtained for formaldehyde and simple peptide prototypes show that our approach is able to yield a quantitative agreement with experiments for vacuo-to-solvent harmonic and anharmonic frequency shifts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.