Abstract

Let $(X,T,\mu)$ be a Cantor minimal sytem and $[[T]]$ the associated topological full group. We analyze $C^*_\pi([[T]])$, where $\pi$ is the Koopman representation attached to the action of $[[T]]$ on $(X,\mu)$. Specifically, we show that $C^*_\pi([[T]])=C^*_\pi([[T]]')$ and that the kernel of the character $\tau$ on $C^*_\pi([[T]])$ coming from weak containment of the trivial representation is a hereditary $C^*$-subalgebra of $C(X)\rtimes\mathbb{Z}$. Consequently, $\ker\tau$ is stably isomorphic to $C(X)\rtimes\mathbb{Z}$, and $C^*_\pi([[T]]')$ is not AF. We also prove that if $G$ is a finitely generated, elementary amenable group and $C^ *(G)$ has real rank zero, then $G$ is finite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call